Pemrogaman Finansial Untuk Memprediksi Volatilitas Nilai Mata Uang Kripto Berbasis Deep Learning Melalui Implementasi Metode LSTM (Studi Kasus: Bitcoin, Ethereum, Tether Dan Binance Coin)
DOI:
https://doi.org/10.58436/jsitp.v4i1.1479Abstract
Sebuah inovasi yang lahir dari revolusi industri 4.0 dalam bidang finansial ialah “cryptocurrency” yakni bentuk mata uang digital sebagai alternatif dari mata uang konvensional yang tercipta dari rangkaian blockchain. Dalam era industri 4.0 ini pasar mata uang kripto begitu masif, hal tersebut berpengaruh terhadap volatilitas nilai mata uang kripto yang cukup tinggi. Berdasarkan data dari finance.yahoo.com, empat posisi market cap teratas per tanggal 18 April 2022 antara lain Bitcoin, Ethereum, Theter dan Binance Coin. Volatilitas nilai mata uang kripto cenderung fluktuatif, yang mana mengalami penguatan dan pelemahan secara signifikan. Hal tersebut membuat transaksi perdagangan pasar kripto terbilang spekulatif dan sangat berisiko. Pemrograman finansial perlu dilakukan untuk memprediksi nilai mata uang kripto. salah satu metode yang digunakan untuk memprediksinya ialah deep learning dengan algortima Long Short-Term Memory (LSTM), yang berfokus untuk menangani data yang bersifat time series seperti harga mata uang kripto. Tujuan penelitian ini menerapkan metode deep learning prediksi dengan Long Short-Term Memory (LSTM) pada pemrograman finansial menggunakan bahasa Python dalam melakukan prediksi nilai mata uang kripto yakni Bitcoin, Ethereum, Theter dan Binance Coin kemudian mengetahui tingkat nilai error yang dihasilkan. Hasil akhir penelitian ini algotritma Long Short-Term Memory (LSTM) berhasil diterapkan yang mana epochs dalam pengujiannya berjumlah 20 serta batch size sebanyak 30 kemudian menghasilkan pola prediksi nilai mata uang kripto dimana hampir semua pola prediksi tersebut mengikuti nilai aktual mata uang kripto dengan hasil evaluasi menggunakan Mean Absolute Error dari masing-masing mata uang kripto antara lain bitcoin dengan persentase 2%, ethereum 3%, tether 2%, binance coin 2%.
Keyword: Mata Uang Kripto, Prediksi, Long Short-Term Memory (LSTM), Python.